Details for: mof

Gene ID: 31518

Symbol: mof

Ensembl ID: FBgn0014340

Description: males absent on the first

Associated with

Other Information

Genular Protein ID: 935477397

Symbol: MOF_DROME

Name: N/A

UniProtKB Accession Codes:

Database IDs:

Citations:

PubMed ID: 9155031

Title: mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila.

PubMed ID: 9155031

DOI: 10.1093/emboj/16.8.2054

PubMed ID: 17878295

Title: Species-specific positive selection of the male-specific lethal complex that participates in dosage compensation in Drosophila.

PubMed ID: 17878295

DOI: 10.1073/pnas.0707445104

PubMed ID: 10731132

Title: The genome sequence of Drosophila melanogaster.

PubMed ID: 10731132

DOI: 10.1126/science.287.5461.2185

PubMed ID: 12537572

Title: Annotation of the Drosophila melanogaster euchromatic genome: a systematic review.

PubMed ID: 12537572

DOI: 10.1186/gb-2002-3-12-research0083

PubMed ID: 12537569

Title: A Drosophila full-length cDNA resource.

PubMed ID: 12537569

DOI: 10.1186/gb-2002-3-12-research0080

PubMed ID: 18039888

Title: Pervasive and largely lineage-specific adaptive protein evolution in the dosage compensation complex of Drosophila melanogaster.

PubMed ID: 18039888

DOI: 10.1534/genetics.107.079459

PubMed ID: 10679323

Title: Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila.

PubMed ID: 10679323

DOI: 10.1016/s0960-9822(00)00311-0

PubMed ID: 10882077

Title: Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila.

PubMed ID: 10882077

DOI: 10.1016/s1097-2765(00)80431-1

PubMed ID: 11014199

Title: Chromodomains are protein-RNA interaction modules.

PubMed ID: 11014199

DOI: 10.1038/35030169

PubMed ID: 11258702

Title: The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition.

PubMed ID: 11258702

DOI: 10.1093/embo-reports/kve022

PubMed ID: 16543150

Title: Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila.

PubMed ID: 16543150

DOI: 10.1016/j.molcel.2006.02.007

PubMed ID: 18510926

Title: Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila.

PubMed ID: 18510926

DOI: 10.1016/j.cell.2008.04.036

PubMed ID: 20620953

Title: The activation potential of MOF is constrained for dosage compensation.

PubMed ID: 20620953

DOI: 10.1016/j.molcel.2010.05.022

PubMed ID: 20620954

Title: The nonspecific lethal complex is a transcriptional regulator in Drosophila.

PubMed ID: 20620954

DOI: 10.1016/j.molcel.2010.05.021

PubMed ID: 22421046

Title: The MOF chromobarrel domain controls genome-wide H4K16 acetylation and spreading of the MSL complex.

PubMed ID: 22421046

DOI: 10.1016/j.devcel.2011.12.016

PubMed ID: 22723752

Title: The NSL complex regulates housekeeping genes in Drosophila.

PubMed ID: 22723752

DOI: 10.1371/journal.pgen.1002736

PubMed ID: 23084834

Title: MSL2 combines sensor and effector functions in homeostatic control of the Drosophila dosage compensation machinery.

PubMed ID: 23084834

DOI: 10.1016/j.molcel.2012.09.012

PubMed ID: 28510597

Title: Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster.

PubMed ID: 28510597

DOI: 10.1371/journal.pone.0177408

PubMed ID: 32502394

Title: Intergenerationally maintained histone H4 lysine 16 acetylation is instructive for future gene activation.

PubMed ID: 32502394

DOI: 10.1016/j.cell.2020.05.026

PubMed ID: 34133927

Title: Correct dosage of X chromosome transcription is controlled by a nuclear pore component.

PubMed ID: 34133927

DOI: 10.1016/j.celrep.2021.109236

PubMed ID: 15964847

Title: Structure of the chromo barrel domain from the MOF acetyltransferase.

PubMed ID: 15964847

DOI: 10.1074/jbc.m501347200

Sequence Information:

  • Length: 827
  • Mass: 92657
  • Checksum: 8B9C5E87E3B01317
  • Sequence:
  • MSEAELEQTP SAGHVQEQPI EEEHEPEQEP TDAYTIGGPP RTPVEDAAAE LSASLDVSGS 
    DQSAEQSLDL SGVQAEAAAE SEPPAKRQHR DISPISEDST PASSTSTSST RSSSSSRYDD 
    VSEAEEAPPE PEPEQPQQQQ QEEKKEDGQD QVKSPGPVEL EAQEPAQPQK QKEVVDQEIE 
    TEDEPSSDTV ICVADINPYG SGSNIDDFVM DPDAPPNAII TEVVTIPAPL HLKGTQQLGL 
    PLAAPPPPPP PPAAEQVPET PASPTDDGEE PPAVYLSPYI RSRYMQESTP GLPTRLAPRD 
    PRQRNMPPPA VVLPIQTVLS ANVEAISDDS SETSSSDDDE EEEEDEDDAL TMEHDNTSRE 
    TVITTGDPLM QKIDISENPD KIYFIRREDG TVHRGQVLQS RTTENAAAPD EYYVHYVGLN 
    RRLDGWVGRH RISDNADDLG GITVLPAPPL APDQPSTSRE MLAQQAAAAA AASSERQKRA 
    ANKDYYLSYC ENSRYDYSDR KMTRYQKRRY DEINHVQKSH AELTATQAAL EKEHESITKI 
    KYIDKLQFGN YEIDTWYFSP FPEEYGKART LYVCEYCLKY MRFRSSYAYH LHECDRRRPP 
    GREIYRKGNI SIYEVNGKEE SLYCQLLCLM AKLFLDHKVL YFDMDPFLFY ILCETDKEGS 
    HIVGYFSKEK KSLENYNVAC ILVLPPHQRK GFGKLLIAFS YELSRKEGVI GSPEKPLSDL 
    GRLSYRSYWA YTLLELMKTR CAPEQITIKE LSEMSGITHD DIIYTLQSMK MIKYWKGQNV 
    ICVTSKTIQD HLQLPQFKQP KLTIDTDYLV WSPQTAAAVV RAPGNSG

Database document:

This is a preview of the gene's schema. Only a few entries are kept for 'singleCellExpressions,' 'mRNAExpressions,' and other large data arrays for visualization purposes. You can zoom in with the mouse wheel for a closer view, and the text will adjust automatically if necessary. For the full schema, download it here.